Analyse contextuelle des phrases pour la prédiction du sentiment sur les données financières

By

Elvys Linhares Pontes

calendar_month

January 11, 2022

schedule

1

Min Read

Abstract — Newsletters and social networks can reflect the opinion about the market and specific stocks from the perspective of analysts and the general public on products and/or services provided by a company. Therefore, sentiment analysis of these texts can provide useful information to help investors trade in the market. In this paper, a hierarchical stack of Transformers model is proposed to identify the sentiment associated with companies and stocks, by predicting a score (of data type real) in a range between –1 and +1. Specifically, we fine-tuned a RoBERTa model to process headlines and microblogs and combined it with additional Transformer layers to process the sentence analysis with sentiment dictionaries to improve the sentiment analysis. We evaluated it on financial data released by SemEval-2017 task 5 and our proposition outperformed the best systems of SemEval-2017 task 5 and strong baselines. Indeed, the combination of contextual sentence analysis with the financial and general sentiment dictionaries provided useful information to our model and allowed it to generate more reliable sentiment scores.

{{cta('c43fb32a-9a43-4f83-a70b-b63a02fd3873','justifycenter')}}

You may also like...

No items found.

Elvys Linhares Pontes

Ingénieur PNL

Elvys est doctorant en traitement du langage naturel et en intelligence artificielle et s'engage à transformer les données brutes en connaissances. « La clé de l'intelligence artificielle a toujours été la représentation. » -Jeff Hawkins